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Abstract. It is shown that the appearance of a fixed-point singularity in the kernel of the two-electron
Cooper problem is responsible for the formation of the Cooper pair for an arbitrarily weak attractive inter-
action between two electrons. This singularity is absent in the problem of three and few superconducting
electrons at zero temperature on the full Fermi sea. Consequently, such three- and few-electron systems on
the full Fermi sea do not form Cooper-type bound states for an arbitrarily weak attractive pair interaction.

PACS. 74.20.Fg BCS theory and its development

1 Introduction

For an arbitrarily weak residual attractive interaction,
at zero temperature two electrons over the full Fermi
sea spontaneously form a bound Cooper pair [1]. These
Cooper pairs lay the foundation of the microscopic
Bardeen-Cooper-Schreiffer (BCS) theory of superconduc-
tivity [2]. Flux quantization and other experimental evi-
dences support the formation of Cooper pairs and their
role in the BCS theory. Appearance of a fixed-point sin-
gularity in the kernel of the momentum space Schrödinger
equation is responsible for the formation of Cooper pairs
for arbitrarily weak attractive interaction. Similar singu-
larity also appears in a general two-fermion problem in
vacuum in one and two dimensions and is responsible, in
these cases, for the formation of two-fermion bound states
for very weak attractive interactions. This singularity is
absent in the two-fermion problem in vacuum in three di-
mensions, and hence in that case there is no two-fermion
bound state for a very weak attractive interaction.

The possibility of few-fermion clustering at low tem-
perature is of recent interest [4] in the BCS to Bose
crossover problem [3] in the Fermi liquid model of not
only a free electron gas but several other fermionic sys-
tems such as nuclear matter, neutron matter (neutron
stars), and electron-hole systems. Although Cooper pair-
ing is supposed to dominate the weak-coupling BCS limit,
it is not clear that few- and multi-electron clustering are
not allowed in different spin and angular momentum states
for coupling simulating a crossover from the BCS to Bose
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problem. This possibility is of concern as in the low-
density region of nuclear matter it has been shown [4] that
at low temperatures the dominant part of nuclear matter
will form α particles which are more strongly bound than
deuterons. Hence, spin-triplet (deuteron) Cooper pairing
and subsequent condensation of deuterons has to com-
pete with α-particle Cooper quartetting and subsequent
condensation. Here, in view of the study of Cooper-type
quartetting in nuclear matter, in this work we consider
the possibility of few-electron clustering within the Fermi
liquid model of electrons. The principal difference between
the nuclear matter and the superconducting electron gas
problem is that in the former the interaction is much
stronger than the weak residual attraction in case of elec-
trons. So far existence of few-electron Cooper-type bound
states have not been experimentally confirmed. However,
if few-electron Cooper-type bound states are allowed in a
specific spin/angular momentum state (for example, in an
exotic high-Tc superconductor), they should be correctly
accomodated in any microscopic theory of superconduc-
tivity.

At zero temperature, a Cooper-type consideration of
the three-electron problem on the full Fermi sea for a very
weak attractive interaction shows that a fixed-point sin-
gularity of the type discussed above is absent in the kernel
of the three-particle equation in momentum space. Hence
there is no Cooper-type bound state for the three-electron
system in any space dimension. Similar results should hold
for clustering of n electrons with n > 3 on the full Fermi
sea.

We consider the three-electron problem on the full
Fermi sea with an arbitrarily weak two-electron interac-
tion in S wave. In this case, for the state with total orbital
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angular momentum of the three-electron system L = 0,
obviously the effective interaction is repulsive because of
the Pauli exclusion principle and there is no bound state.
This is because a third electron, with spin up or down,
can not approximate a singlet electron pair with one spin-
up and one spin-down electron and form a three-electron
bound state for L = 0, as the antisymmetrization of the
three-electron wave function has to follow entirely from its
spin part. However, for the three-electron state with total
orbital angular momentum L odd, the antisymmetriza-
tion of the wave function follows partly from its spin part
and partly from its orbital part. In this case, there could
be an effective attraction between the three electrons in
the state with L = 1, which could form a bound state.
We write the Faddeev equation [5] for the three-electron
problem on the full Fermi sea and find that the effective
three-electron interaction is attractive for oddL states and
repulsive for even L states for a very weak two-electron at-
tractive interaction in S state. However, the Cooper-type
singularity does not appear in the kernel of the Faddeev
equation. Hence there are no Cooper-type three-electron
bound states for very weak attractive interactions.

In Section 2 we present a discussion of the two-electron
problem (a) in vacuum and (b) on the full Fermi sea for
an arbitrarily weak attractive potential. We show that the
presence of a fixed-point singularity in the kernel of the
problem in momentum space is responsible for the forma-
tion of a bound state (a) in vacuum in one and two dimen-
sions and (b) on the full Fermi sea in any dimension. In
Section 3 we formulate the three-electron problem on the
full Fermi sea for an arbitrarily weak attractive pair poten-
tial. We find that a fixed-point singularity does not appear
in the kernel of the momentum-space Faddeev equation in
this case and there is no three-electron bound state for an
arbitrarily weak attractive pair potential.

2 The two-electron problem

For two electrons, each of mass m, in the center of mass
frame the single (two) particle energy is given by εq = q2

(2q2), in units ~ = 2m = 1, where q is the wave num-
ber. We consider a purely attractive weak residual S-wave
short-range separable potential between electrons:

V (p, q) = −λg(p)g(q). (1)

Because of the presence of the lattice, the superconducting
electrons experience a pairwise weak finite-range residual
attraction which is modelled by the above potential. In
the conventional BCS model the potential form factors
g(p) are set equal to unity and the range of the potential
is introduced by the Debye cut off in momentum space [2].
The analysis and conclusion of this work are independent
of this specific form of the potential employed. For Cooper
pairing in zero (even) orbital angular momentum state(s),
the allowed spin state of the two-electron system is
S = 0 by Pauli exclusion principle. Hence this potential
acts in the 1S state: the S-wave spin-singlet state. The

two-electron problem, with this potential at energy E, is
given by the following equation

f(q) =

∫ ∞
c

dDp
V (q, p)f(p)

E − 2p2
, (2)

where c = 0 in vacuum, and c = kF , the Fermi momen-
tum, for the Cooper problem. Here G ≡ (E − 2p2)−1 is
the Green function, f(q) the bound-state form factor, E
the two-electron energy and D is the dimension of the
space. For a two-electron bound state in vacuum, we have
E ≤ 0 and for the bound state over the full Fermi sea, the
condition E ≤ 2k2

F is to be satisfied.
In vacuum, for λ → 0, the Green function develops

a singularity at the lower limit as the binding energy
α2(≡ −E) → 0. In this limit, for the above separable
potential, equation (2) reduces to

1 = λC

∫ ∞
0

pD−1dp
g2(p)

2p2
, (3)

where C = 4π (2π, 2) for D = 3 (2, 1). In three space di-
mensions, (D = 3), for usual well-behaved potential form
factors g(p), the integral in equation (3) is finite and it
is impossible to satisfy condition (3) in the limit λ → 0.
Hence there are no bound states in vacuum for very weak
potentials in three dimensions. However, in one and two
dimensions, the integral in equation (3) is infinite and one
can satisfy condition (3) in the limit λ → 0 and one can
have bound states in one and two dimensions for arbitrar-
ily weak attractive potentials.

On the full Fermi sea, as λ → 0, the Green function
also develops a singularity at the lower limit as the Cooper
pair binding energy α2(≡ 2k2

F −E)→ 0. In this limit, for
the above separable potential, equation (2) reduces to

1 = λC

∫ ∞
kF

pD−1dp
g2(p)

2(p2 − k2
F )
· (4)

Equation (4) represents the condition for Cooper instabil-
ity. The integral in equation (4) is infinite in any space
dimension for usual well-behaved form factors g(p) and
equation (4) can be satisfied in the limit λ → 0 for any
kF 6= 0. For kF = 0, the singularity in the Green func-
tion of equation (4) at the lower limit of the integral is
cancelled by a zero in the phase space pD−1dp for D = 3.
This singularity for kF = 0 survives in the case of D = 1
and 2 and is responsible for the two-electron bound state
in vacuum for any arbitrarily weak attractive potential.

We base our discussion on equations of type (4) which
led Cooper to his conclusion on pair formation. A more
complete discussion could be based on a linearized ver-
sion of the gap equation. The present simplification does
not change anything in our qualitative discussion on the
existence of Cooper-type states based of the appearance
of singularities. The essential difference between the two
approaches is in the use of the right phase space factors,
which is not expected to change the general criteria for
the appearance of singularities as considered here for two-
and few-electron systems.
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Consequently, one can have Cooper pairs in any space
dimension for electrons interacting via a weak attractive
interaction over the full Fermi sea. We have used a sepa-
rable potential to reach the above conclusion. As the ar-
guments are based on the existence of a singularity in the
kernel, the conclusion should hold for any short-range po-
tential. For potential (1), the two-electron t matrix for
dynamics on the full Fermi sea has the following analytic
form

t(p, q, E) = g(p)τ(E)g(q), (5)

where

τ(E) =

[
−

1

λ
−

∫ ∞
kF

dDqg2(q)(E − 2q2)−1

]−1

. (6)

The use of separable potential (1) facilitates the solution
of the three-electron problem on the full Fermi sea, which
we take up in the next section.

3 The three-electron problem

The simplest of the three-electron problem on the full
Fermi sea, that we consider here in some details, is the
one where they interact via S-wave pair potential (1) in
the 1S state. This is the problem of three superconducting
electrons on the top of the full Fermi sea at zero tempera-
ture and is in effect a many-body problem involving all the
electrons and the lattice. However, the many-body nature
of the problem introduces only minor changes over the
three-electron problem in vacuum. As in the two-electron
Cooper problem, one has a weak attractive interaction be-
tween the electrons in place of the Coulomb repulsion in
vacuum with an appropriate truncation of the phase space
in momentum space consistent with the Pauli principle. So
effectively one has the problem of three electrons under the
action of a weak attractive interaction in vacuum subject
to the above-mentioned restrictions on the momentum-
space phase space arising from the many-body nature of
the problem.

The most likely assignment of the quantum number
(LSJ) (total orbital angular momentum, total spin, and
total angular momentum) for the bound state of the three
electrons on the full Fermi sea in this case is (L = 1, S =
1/2, J = 1/2 and 3/2). The three-electron bound state can
be visualized as the bound state of the third (spectator)
particle with the spin-singlet bound state of the first two
particles (1 and 2). For the spectator particle to be bound
to the singlet pair, lowest value for its angular momentum
state relative to the pair should be L = 1. The value L = 0
is not allowed by the Pauli exclusion principle. This is why
the lowest probable value of L is 1. The only possible value
for S is 1/2, so that there are two degenerate J values 1/2
and 3/2. In the following we shall consider only this state.
If, in addition, one allows a two-electron potential in the
3P state, one can have a three-electron bound state for
(LSJ) = (1, 3/2, 1/2), (1, 3/2, 3/2), (0, 1/2, 1/2) etc.
A complete analysis of these states, in the context of the
three-neutron system, has been given by Mitra [6].

The t matrix of equation (5) acts as an effective po-
tential in the three-electron Faddeev equation in three di-
mensions, which in this case can be written as [5,7]

F (q, E) = 2τ(E − 3q2/2)

∫
d3pK(q,p)F (p, E), (7)

where

K(q,p) = χ
g(|p + q/2|)g(|q + p/2|)

E −A
, (8)

with A = p2 + q2 + (p + q)2. Now E is the three-electron
energy and for the bound state on the full Fermi sea
E ≤ 3k2

F . Here, for L = 1 and S = 1/2, the spin coupling
coefficient χ = −1/2, and p, q, |p + q| > kF . We should
now stick to a specific total angular momentum state L
(of the spectator particle) and take a partial-wave projec-
tion of equation (7) in L before solving it. The partial-wave
projection of equation (7) is given by

FL(q, E) = 4πτ(E − 3q2/2)

∫ ∞
kF

p2dpKL(q, p)FL(p,E),

(9)

where

KL(q, p) =

∫ 1

−1

dxPL(x)K(q,p)Θ(A − 3k2
F )Θ(q2 − k2

F )

(10)

is the partial-wave kernel for this problem. Here x is the
cosine of the angle between p and q, PL(x) is the Legen-
dre polynomial, and Θ(x) = 1 for x ≥ 0 and = 0, oth-
erwise. Equation (10) with kF = 0 is the usual kernel
of the Faddeev equation. A direct calculation has revealed
that, for an attractive potential, the kernel (10) is positive
(negative) definite for L odd (even). Hence the three-body
equation (9) is purely attractive for odd L and we shall
consider L = 1 below.

For a detailed study of this problem, one should con-
sider the partial-wave equation (9). However, the full equa-
tion (7) reveals the essential interesting feature. The Green
function of equation (8), unlike in the two-electron prob-
lem, does not have any fixed-point singularity for all q. In
the arbitrarily weak attractive potential limit λ → 0, the
function τ of equations (5, 7) also tends to zero. Then one
faces the question whether equation (7) permits a non-
trivial solution in this limit, which could correspond to a
weakly bound three-electron state. As the binding energy
of the three-electron system is expected to tend to zero,
the appropriate E in this equation is E = 3k2

F . One can
see from equation (7) that the energy denominator in this
equation does not have a fixed-point singularity, as in the
two-electron case. Hence the integral in equation (7) is
finite and its right hand side is always zero in the weak-
coupling limit as τ → 0. This means that the form factor
F (q, E) is identically zero in the weak-coupling limit and
there is no three-electron bound state.

The situation does not change after the partial-wave
projection. The kernel KL(q, p) of equation (10) for L = 1
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develops weak and integrable moving logarithmic singu-
larities at 2p2 + 2q2 ± 2pq = 3k2

F , as opposed to fixed-
point singularities in the two-electron problem. As these
singularities are integrable, the integral on the right hand
side of equation (9) is always finite, so that, in the limit
of weak interaction, as τ → 0, this equation has the only
trivial solution F (q, E) = 0. Hence there are no Cooper-
type three-electron bound state in this limit. However, the
kernel is attractive in this case and one can have a three-
electron bound state as the strength of the potential is
increased.

The present general discussion is based on the exis-
tence of a fixed-point singularity and not on some specific
property of the system. Hence it should be applicable to
other similar problems. For example, identical behavior
is expected in one and two dimensions and other (LSJ)
three-electron bound states on the full Fermi sea. So there
are no Cooper type bound states in any space dimension
for the three-electron system for an arbitrarily weak two-
electron potential.

The present discussion can easily be extended to clus-
tering of n electrons (n ≥ 4) on the full Fermi sea. For
n = 4, the problem should be treated by a four-body dy-
namical equation. The kernel of such equation will involve
four- and three-electron Green functions, none of which
could have a fixed-point singularity. Hence, by similar ar-
guments, the four-electron Cooper-type bound states are
not also allowed for an arbitrarily weak two-electron po-
tential.

4 Summary

We have shown that the appearance of a fixed-point sin-
gularity in the kernel of the momentum-space Schrödinger
equation is responsible for the existence of a bound state
for an arbitrarily weak attractive potential in the zero-
temperature limit. The formation of a Cooper pair in any

space dimension and of a two-electron bound state in vac-
uum in one and two space dimensions under the action of a
very weak attractive potential is due to the appearance of
the above fixed-point singularity. Similar fixed-point sin-
gularities are not expected to appear in the n-electron
(n > 2) problem and there are no Cooper-type bound
states in these cases for arbitrarily weak attractive poten-
tials in the zero-temperature limit. However, with stronger
attractive potentials three and few-electon clusters can be
formed on the full Fermi sea as has been discussed re-
cently in the low-density limit of nuclear matter at low
temperatures [4].
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